Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
J Clin Invest ; 133(12)2023 06 15.
Article in English | MEDLINE | ID: covidwho-2253194

ABSTRACT

STAT2 is a transcription factor activated by type I and III IFNs. We report 23 patients with loss-of-function variants causing autosomal recessive (AR) complete STAT2 deficiency. Both cells transfected with mutant STAT2 alleles and the patients' cells displayed impaired expression of IFN-stimulated genes and impaired control of in vitro viral infections. Clinical manifestations from early childhood onward included severe adverse reaction to live attenuated viral vaccines (LAV) and severe viral infections, particularly critical influenza pneumonia, critical COVID-19 pneumonia, and herpes simplex virus type 1 (HSV-1) encephalitis. The patients displayed various types of hyperinflammation, often triggered by viral infection or after LAV administration, which probably attested to unresolved viral infection in the absence of STAT2-dependent types I and III IFN immunity. Transcriptomic analysis revealed that circulating monocytes, neutrophils, and CD8+ memory T cells contributed to this inflammation. Several patients died from viral infection or heart failure during a febrile illness with no identified etiology. Notably, the highest mortality occurred during early childhood. These findings show that AR complete STAT2 deficiency underlay severe viral diseases and substantially impacts survival.


Subject(s)
COVID-19 , Encephalitis, Herpes Simplex , Influenza, Human , Pneumonia , Virus Diseases , Humans , Child, Preschool , Virus Diseases/genetics , Alleles , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/genetics
2.
Int J Mol Sci ; 24(4)2023 Feb 18.
Article in English | MEDLINE | ID: covidwho-2253656

ABSTRACT

Functional or compositional perturbations of the microbiome can occur at different sites, of the body and this dysbiosis has been linked to various diseases. Changes in the nasopharyngeal microbiome are associated to patient's susceptibility to multiple viral infections, supporting the idea that the nasopharynx may be playing an important role in health and disease. Most studies on the nasopharyngeal microbiome have focused on a specific period in the lifespan, such as infancy or the old age, or have other limitations such as low sample size. Therefore, detailed studies analyzing the age- and sex-associated changes in the nasopharyngeal microbiome of healthy people across their whole life are essential to understand the relevance of the nasopharynx in the pathogenesis of multiple diseases, particularly viral infections. One hundred twenty nasopharyngeal samples from healthy subjects of all ages and both sexes were analyzed by 16S rRNA sequencing. Nasopharyngeal bacterial alpha diversity did not vary in any case between age or sex groups. Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes were the predominant phyla in all the age groups, with several sex-associated. Acinetobacter, Brevundimonas, Dolosigranulum, Finegoldia, Haemophilus, Leptotrichia, Moraxella, Peptoniphilus, Pseudomonas, Rothia, and Staphylococcus were the only 11 bacterial genera that presented significant age-associated differences. Other bacterial genera such as Anaerococcus, Burkholderia, Campylobacter, Delftia, Prevotella, Neisseria, Propionibacterium, Streptococcus, Ralstonia, Sphingomonas, and Corynebacterium appeared in the population with a very high frequency, suggesting that their presence might be biologically relevant. Therefore, in contrast to other anatomical areas such as the gut, bacterial diversity in the nasopharynx of healthy subjects remains stable and resistant to perturbations throughout the whole life and in both sexes. Age-associated abundance changes were observed at phylum, family, and genus levels, as well as several sex-associated changes probably due to the different levels of sex hormones present in both sexes at certain ages. Our results provide a complete and valuable dataset that will be useful for future research aiming for studying the relationship between changes in the nasopharyngeal microbiome and susceptibility to or severity of multiple diseases.


Subject(s)
Microbiota , Virus Diseases , Male , Female , Humans , RNA, Ribosomal, 16S/genetics , Genes, rRNA , Nasopharynx/microbiology , Microbiota/genetics , Bacteria/genetics , Aging , Virus Diseases/genetics
3.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: covidwho-2234674

ABSTRACT

Transactive response DNA binding protein 43 kDa (TDP-43) was discovered in 2001 as a cellular factor capable to inhibit HIV-1 gene expression. Successively, it was brought to new life as the most prevalent RNA-binding protein involved in several neurological disorders, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Despite the fact that these two research areas could be considered very distant from each other, in recent years an increasing number of publications pointed out the existence of a potentially important connection. Indeed, the ability of TDP-43 to act as an important regulator of all aspects of RNA metabolism makes this protein also a critical factor during expression of viral RNAs. Here, we summarize all recent observations regarding the involvement of TDP-43 in viral entry, replication and latency in several viruses that include enteroviruses (EVs), Theiler's murine encephalomyelitis virus (TMEV), human immunodeficiency virus (HIV), human endogenous retroviruses (HERVs), hepatitis B virus (HBV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), West Nile virus (WNV), and herpes simplex virus-2 (HSV). In particular, in this work, we aimed to highlight the presence of similarities with the most commonly studied TDP-43 related neuronal dysfunctions.


Subject(s)
TDP-43 Proteinopathies , Virus Diseases , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , COVID-19/genetics , COVID-19/metabolism , DNA-Binding Proteins/metabolism , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , SARS-CoV-2/metabolism , TDP-43 Proteinopathies/genetics , TDP-43 Proteinopathies/metabolism , Virus Diseases/genetics , Virus Diseases/metabolism
4.
Nucleic Acids Res ; 50(D1): D817-D827, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-2236145

ABSTRACT

Virus infections are huge threats to living organisms and cause many diseases, such as COVID-19 caused by SARS-CoV-2, which has led to millions of deaths. To develop effective strategies to control viral infection, we need to understand its molecular events in host cells. Virus related functional genomic datasets are growing rapidly, however, an integrative platform for systematically investigating host responses to viruses is missing. Here, we developed a user-friendly multi-omics portal of viral infection named as MVIP (https://mvip.whu.edu.cn/). We manually collected available high-throughput sequencing data under viral infection, and unified their detailed metadata including virus, host species, infection time, assay, and target, etc. We processed multi-layered omics data of more than 4900 viral infected samples from 77 viruses and 33 host species with standard pipelines, including RNA-seq, ChIP-seq, and CLIP-seq, etc. In addition, we integrated these genome-wide signals into customized genome browsers, and developed multiple dynamic charts to exhibit the information, such as time-course dynamic and differential gene expression profiles, alternative splicing changes and enriched GO/KEGG terms. Furthermore, we implemented several tools for efficiently mining the virus-host interactions by virus, host and genes. MVIP would help users to retrieve large-scale functional information and promote the understanding of virus-host interactions.


Subject(s)
Databases, Factual , Host Microbial Interactions , Virus Diseases , Animals , Chromatin Immunoprecipitation Sequencing , Gene Ontology , Genome, Viral , High-Throughput Nucleotide Sequencing , Host Microbial Interactions/genetics , Humans , Metadata , Sequence Analysis, RNA , Software , Transcriptome , User-Computer Interface , Virus Diseases/genetics , Virus Diseases/metabolism , Web Browser
5.
Viruses ; 14(11)2022 Nov 03.
Article in English | MEDLINE | ID: covidwho-2200863

ABSTRACT

Chemokines constitute a group of small, secreted proteins that regulate leukocyte migration and contribute to their activation. Chemokines are crucial inflammatory mediators that play a key role in managing viral infections, during which the profile of chemokine expression helps shape the immune response and regulate viral clearance, improving clinical outcome. In particular, the chemokine ligand CXCL10 and its receptor CXCR3 were explored in a plethora of RNA and DNA viral infections. In this review, we highlight the expression profile and role of the CXCL10/CXCR3 axis in the host defense against a variety of RNA and DNA viral infections. We also discuss the interactions among viruses and host cells that trigger CXCL10 expression, as well as the signaling cascades induced in CXCR3 positive cells.


Subject(s)
Chemokine CXCL10 , Virus Diseases , Humans , Chemokine CXCL10/genetics , RNA , Virus Diseases/genetics , DNA
6.
Genome Med ; 14(1): 18, 2022 02 21.
Article in English | MEDLINE | ID: covidwho-1688773

ABSTRACT

BACKGROUND: Measuring host gene expression is a promising diagnostic strategy to discriminate bacterial and viral infections. Multiple signatures of varying size, complexity, and target populations have been described. However, there is little information to indicate how the performance of various published signatures compare to one another. METHODS: This systematic comparison of host gene expression signatures evaluated the performance of 28 signatures, validating them in 4589 subjects from 51 publicly available datasets. Thirteen COVID-specific datasets with 1416 subjects were included in a separate analysis. Individual signature performance was evaluated using the area under the receiving operating characteristic curve (AUC) value. Overall signature performance was evaluated using median AUCs and accuracies. RESULTS: Signature performance varied widely, with median AUCs ranging from 0.55 to 0.96 for bacterial classification and 0.69-0.97 for viral classification. Signature size varied (1-398 genes), with smaller signatures generally performing more poorly (P < 0.04). Viral infection was easier to diagnose than bacterial infection (84% vs. 79% overall accuracy, respectively; P < .001). Host gene expression classifiers performed more poorly in some pediatric populations (3 months-1 year and 2-11 years) compared to the adult population for both bacterial infection (73% and 70% vs. 82%, respectively; P < .001) and viral infection (80% and 79% vs. 88%, respectively; P < .001). We did not observe classification differences based on illness severity as defined by ICU admission for bacterial or viral infections. The median AUC across all signatures for COVID-19 classification was 0.80 compared to 0.83 for viral classification in the same datasets. CONCLUSIONS: In this systematic comparison of 28 host gene expression signatures, we observed differences based on a signature's size and characteristics of the validation population, including age and infection type. However, populations used for signature discovery did not impact performance, underscoring the redundancy among many of these signatures. Furthermore, differential performance in specific populations may only be observable through this type of large-scale validation.


Subject(s)
Bacterial Infections/diagnosis , Datasets as Topic/statistics & numerical data , Host-Pathogen Interactions/genetics , Transcriptome , Virus Diseases/diagnosis , Adult , Bacterial Infections/epidemiology , Bacterial Infections/genetics , Biomarkers/analysis , COVID-19/diagnosis , COVID-19/genetics , Child , Cohort Studies , Diagnosis, Differential , Gene Expression Profiling/statistics & numerical data , Genetic Association Studies/statistics & numerical data , Humans , Publications/statistics & numerical data , SARS-CoV-2/pathogenicity , Validation Studies as Topic , Virus Diseases/epidemiology , Virus Diseases/genetics
7.
Microrna ; 11(3): 185-189, 2022.
Article in English | MEDLINE | ID: covidwho-1993674

ABSTRACT

Viruses are microscopic biological entities that can cause diseases. Viruses require a host cell to replicate and generate progeny. Once inside, viruses hijack the main cellular machinery for their benefit, disrupting cell functions and causing detrimental effects on cell physiology. MicroRNAs are short, non-coding RNAs that regulate gene expression. Recent works have shown that cell-miRNAs can modulate antiviral defense during viral infection, and viruses can disrupt these existing miRNA networks. Furthermore, multiple RNA viruses encode their own miRNAs to evade the host immune response. In this review, we analyze the activities of both, miRNAs as pro-viral modulators and miRNAs as anti-viral agents and their relationship with the development of the disease.


Subject(s)
COVID-19 , MicroRNAs , Virus Diseases , Humans , MicroRNAs/genetics , SARS-CoV-2/genetics , RNA, Viral/genetics , COVID-19/genetics , Virus Diseases/genetics
8.
Int J Mol Sci ; 23(10)2022 May 12.
Article in English | MEDLINE | ID: covidwho-1875640

ABSTRACT

Viral infections can be fatal and consequently, they are a serious threat to human health. Therefore, the development of vaccines and appropriate antiviral therapeutic agents is essential. Depending on the virus, it can cause an acute or a chronic infection. The characteristics of viruses can act as inhibiting factors for the development of appropriate treatment methods. Genome editing technology, including the use of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) proteins, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), is a technology that can directly target and modify genomic sequences in almost all eukaryotic cells. The development of this technology has greatly expanded its applicability in life science research and gene therapy development. Research on the use of this technology to develop therapeutics for viral diseases is being conducted for various purposes, such as eliminating latent infections or providing resistance to new infections. In this review, we will look at the current status of the development of viral therapeutic agents using genome editing technology and discuss how this technology can be used as a new treatment approach for viral diseases.


Subject(s)
Gene Editing , Virus Diseases , Genome , Humans , Technology , Transcription Activator-Like Effector Nucleases/genetics , Virus Diseases/genetics , Virus Diseases/therapy
9.
PLoS One ; 17(3): e0262373, 2022.
Article in English | MEDLINE | ID: covidwho-1753184

ABSTRACT

Human genetics has been proposed to play an essential role in inter-individual differences in respiratory virus infection occurrence and outcomes. To systematically understand human genetic contributions to respiratory virus infection, we developed the database dbGSRV, a manually curated database that integrated the host genetic susceptibility and severity studies of respiratory viruses scattered over literatures in PubMed. At present, dbGSRV contains 1932 records of genetic association studies relating 1010 unique variants and seven respiratory viruses, manually curated from 168 published articles. Users can access the records by quick searching, batch searching, advanced searching and browsing. Reference information, infection status, population information, mutation information and disease relationship are provided for each record, as well as hyperlinks to public databases in convenient of users accessing more information. In addition, a visual overview of the topological network relationship between respiratory viruses and associated genes is provided. Therefore, dbGSRV offers a convenient resource for researchers to browse and retrieve genetic associations with respiratory viruses, which may inspire future studies and provide new insights in our understanding and treatment of respiratory virus infection. Database URL: http://www.ehbio.com/dbGSRV/front/.


Subject(s)
Virus Diseases , Viruses , Databases, Factual , Databases, Genetic , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Virus Diseases/genetics , Viruses/genetics
10.
Cells ; 11(6)2022 03 15.
Article in English | MEDLINE | ID: covidwho-1742343

ABSTRACT

Viruses are one of the most important concerns for human health, and overcoming viral infections is a worldwide challenge. However, researchers have been trying to manipulate viral genomes to overcome various disorders, including cancer, for vaccine development purposes. CRISPR (clustered regularly interspaced short palindromic repeats) is becoming one of the most functional and widely used tools for RNA and DNA manipulation in multiple organisms. This approach has provided an unprecedented opportunity for creating simple, inexpensive, specific, targeted, accurate, and practical manipulations of viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human immunodeficiency virus-1 (HIV-1), and vaccinia virus. Furthermore, this method can be used to make an effective and precise diagnosis of viral infections. Nevertheless, a valid and scientifically designed CRISPR system is critical to make more effective and accurate changes in viruses. In this review, we have focused on the best and the most effective ways to design sgRNA, gene knock-in(s), and gene knock-out(s) for virus-targeted manipulation. Furthermore, we have emphasized the application of CRISPR technology in virus diagnosis and in finding significant genes involved in virus-host interactions.


Subject(s)
COVID-19 , Virus Diseases , Viruses , COVID-19/diagnosis , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , DNA Viruses , Host Microbial Interactions , Humans , SARS-CoV-2/genetics , Virus Diseases/diagnosis , Virus Diseases/genetics , Viruses/genetics
11.
Viruses ; 13(11)2021 11 11.
Article in English | MEDLINE | ID: covidwho-1534242

ABSTRACT

CRISPR/Cas is a powerful tool for studying the role of genes in viral infections. The invention of CRISPR screening technologies has made it possible to untangle complex interactions between the host and viral agents. Moreover, whole-genome and pathway-specific CRISPR screens have facilitated identification of novel drug candidates for treating viral infections. In this review, we highlight recent developments in the fields of CRISPR/Cas with a focus on the use of CRISPR screens for studying viral infections and identifying new candidate genes to aid development of antivirals.


Subject(s)
CRISPR-Cas Systems , Genetic Techniques , Genome-Wide Association Study/methods , High-Throughput Screening Assays/methods , Virus Diseases/genetics , Virus Diseases/virology , Viruses/genetics , Drug Discovery , Host Microbial Interactions , Humans
12.
Cells ; 10(11)2021 11 07.
Article in English | MEDLINE | ID: covidwho-1512135

ABSTRACT

The bronchial vascular endothelial network plays important roles in pulmonary pathology during respiratory viral infections, including respiratory syncytial virus (RSV), influenza A(H1N1) and importantly SARS-Cov-2. All of these infections can be severe and even lethal in patients with underlying risk factors.A major obstacle in disease prevention is the lack of appropriate efficacious vaccine(s) due to continuous changes in the encoding capacity of the viral genome, exuberant responsiveness of the host immune system and lack of effective antiviral drugs. Current management of these severe respiratory viral infections is limited to supportive clinical care. The primary cause of morbidity and mortality is respiratory failure, partially due to endothelial pulmonary complications, including edema. The latter is induced by the loss of alveolar epithelium integrity and by pathological changes in the endothelial vascular network that regulates blood flow, blood fluidity, exchange of fluids, electrolytes, various macromolecules and responses to signals triggered by oxygenation, and controls trafficking of leukocyte immune cells. This overview outlines the latest understanding of the implications of pulmonary vascular endothelium involvement in respiratory distress syndrome secondary to viral infections. In addition, the roles of infection-induced cytokines, growth factors, and epigenetic reprogramming in endothelial permeability, as well as emerging treatment options to decrease disease burden, are discussed.


Subject(s)
Endothelial Cells/pathology , Oxidative Stress , Respiratory Distress Syndrome/pathology , Virus Diseases/pathology , Epigenesis, Genetic , Humans , Influenza A Virus, H1N1 Subtype/physiology , Pulmonary Edema/genetics , Pulmonary Edema/pathology , Pulmonary Edema/virology , Respiratory Distress Syndrome/genetics , Respiratory Distress Syndrome/virology , Respiratory Syncytial Viruses/pathogenicity , SARS-CoV-2/pathogenicity , Virus Diseases/genetics , Virus Diseases/virology
13.
J Virol ; 95(12)2021 05 24.
Article in English | MEDLINE | ID: covidwho-1501541

ABSTRACT

Long disregarded as junk DNA or genomic dark matter, endogenous retroviruses (ERVs) have turned out to represent important components of the antiviral immune response. These remnants of once-infectious retroviruses not only regulate cellular immune activation, but may even directly target invading viral pathogens. In this Gem, we summarize mechanisms by which retroviral fossils protect us from viral infections. One focus will be on recent advances in the role of ERVs as regulators of antiviral gene expression.


Subject(s)
Endogenous Retroviruses/physiology , Retroelements , Virus Diseases/immunology , Animals , Endogenous Retroviruses/genetics , Enhancer Elements, Genetic , Gene Expression Regulation , Humans , Immunity, Cellular , Promoter Regions, Genetic , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Receptors, Pattern Recognition/metabolism , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/metabolism , Viral Proteins/metabolism , Virion/metabolism , Virus Diseases/genetics , Virus Diseases/virology
14.
Int J Mol Sci ; 22(21)2021 Oct 27.
Article in English | MEDLINE | ID: covidwho-1487420

ABSTRACT

Tetraspanins are transmembrane glycoproteins that have been shown increasing interest as host factors in infectious diseases. In particular, they were implicated in the pathogenesis of both non-enveloped (human papillomavirus (HPV)) and enveloped (human immunodeficiency virus (HIV), Zika, influenza A virus, (IAV), and coronavirus) viruses through multiple stages of infection, from the initial cell membrane attachment to the syncytium formation and viral particle release. However, the mechanisms by which different tetraspanins mediate their effects vary. This review aimed to compare and contrast the role of tetraspanins in the life cycles of HPV, HIV, Zika, IAV, and coronavirus viruses, which cause the most significant health and economic burdens to society. In doing so, a better understanding of the relative contribution of tetraspanins in virus infection will allow for a more targeted approach in the treatment of these diseases.


Subject(s)
Host-Pathogen Interactions/physiology , Tetraspanins/physiology , Virus Diseases/metabolism , Gene Expression Regulation, Viral , HIV-1/pathogenicity , Humans , Influenza A virus/pathogenicity , Papillomaviridae/pathogenicity , SARS-CoV-2/pathogenicity , Virus Diseases/genetics , Virus Diseases/virology , Virus Internalization , Zika Virus/pathogenicity
15.
Cells ; 10(11)2021 10 24.
Article in English | MEDLINE | ID: covidwho-1480600

ABSTRACT

Virus-related mortality and morbidity are due to cell/tissue damage caused by replicative pressure and resource exhaustion, e.g., HBV or HIV; exaggerated immune responses, e.g., SARS-CoV-2; and cancer, e.g., EBV or HPV. In this context, oncogenic and other types of viruses drive genetic and epigenetic changes that expand the tumorigenic program, including modifications to the ability of cancer cells to migrate. The best-characterized group of changes is collectively known as the epithelial-mesenchymal transition, or EMT. This is a complex phenomenon classically described using biochemistry, cell biology and genetics. However, these methods require enormous, often slow, efforts to identify and validate novel therapeutic targets. Systems biology can complement and accelerate discoveries in this field. One example of such an approach is Boolean networks, which make complex biological problems tractable by modeling data ("nodes") connected by logical operators. Here, we focus on virus-induced cellular plasticity and cell reprogramming in mammals, and how Boolean networks could provide novel insights into the ability of some viruses to trigger uncontrolled cell proliferation and EMT, two key hallmarks of cancer.


Subject(s)
Cell Plasticity/genetics , Gene Regulatory Networks , Virus Diseases/pathology , Viruses/pathogenicity , Animals , Cellular Reprogramming/genetics , Epithelial-Mesenchymal Transition/genetics , Humans , Neoplasms/genetics , Neoplasms/pathology , Systems Biology , Virus Diseases/genetics , Viruses/classification
16.
J Clin Immunol ; 41(7): 1446-1456, 2021 10.
Article in English | MEDLINE | ID: covidwho-1453806

ABSTRACT

STAT2 is distinguished from other STAT family members by its exclusive involvement in type I and III interferon (IFN-I/III) signaling pathways, and its unique behavior as both positive and negative regulator of IFN-I signaling. The clinical relevance of these opposing STAT2 functions is exemplified by monogenic diseases of STAT2. Autosomal recessive STAT2 deficiency results in heightened susceptibility to severe and/or recurrent viral disease, whereas homozygous missense substitution of the STAT2-R148 residue is associated with severe type I interferonopathy due to loss of STAT2 negative regulation. Here we review the clinical presentation, pathogenesis, and management of these disorders of STAT2.


Subject(s)
Genetic Diseases, Inborn/genetics , Immune System Diseases/genetics , Interferon Type I/immunology , STAT2 Transcription Factor/genetics , Virus Diseases/genetics , Animals , Gain of Function Mutation , Genetic Diseases, Inborn/immunology , Genetic Predisposition to Disease , Humans , Immune System Diseases/immunology , Loss of Function Mutation , Phenotype , STAT2 Transcription Factor/chemistry , STAT2 Transcription Factor/immunology , Virus Diseases/immunology
17.
Int J Mol Med ; 47(5)2021 05.
Article in English | MEDLINE | ID: covidwho-1448967

ABSTRACT

Circular RNAs (circRNAs) are a class of non­coding RNAs with a circular, covalent structure that lack both 5' ends and 3' poly(A) tails, which are stable and specific molecules that exist in eukaryotic cells and are highly conserved. The role of circRNAs in viral infections is being increasingly acknowledged, since circRNAs have been discovered to be involved in several viral infections (such as hepatitis B virus infection and human papilloma virus infection) through a range of circRNA/microRNA/mRNA regulatory axes. These findings have prompted investigations into the potential of circRNAs as targets for the diagnosis and treatment of viral infection­related diseases. The aim of the present review was to systematically examine and discuss the role of circRNAs in several common viral infections, as well as their potential as diagnostic markers and therapeutic targets.


Subject(s)
MicroRNAs/genetics , RNA, Circular/physiology , RNA, Messenger/genetics , Virus Diseases/genetics , Biomarkers/analysis , Humans , RNA, Circular/genetics , Virus Diseases/diagnosis , Virus Diseases/therapy , Virus Diseases/virology
18.
Front Immunol ; 12: 624293, 2021.
Article in English | MEDLINE | ID: covidwho-1394756

ABSTRACT

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which interacts with a wide range of organic molecules of endogenous and exogenous origin, including environmental pollutants, tryptophan metabolites, and microbial metabolites. The activation of AHR by these agonists drives its translocation into the nucleus where it controls the expression of a large number of target genes that include the AHR repressor (AHRR), detoxifying monooxygenases (CYP1A1 and CYP1B1), and cytokines. Recent advances reveal that AHR signaling modulates aspects of the intrinsic, innate and adaptive immune response to diverse microorganisms. This review will focus on the increasing evidence supporting a role for AHR as a modulator of the host response to viral infection.


Subject(s)
Adaptive Immunity , Immunity, Innate , Receptors, Aryl Hydrocarbon/metabolism , Virus Diseases/virology , Viruses/immunology , Active Transport, Cell Nucleus , Animals , Gene Expression Regulation , Host-Pathogen Interactions , Humans , Ligands , Signal Transduction , Virus Diseases/genetics , Virus Diseases/immunology , Virus Diseases/metabolism , Viruses/genetics , Viruses/pathogenicity
19.
FEBS J ; 288(17): 5071-5088, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1393880

ABSTRACT

While there is undeniable evidence to link endosomal acid-base homeostasis to viral pathogenesis, the lack of druggable molecular targets has hindered translation from bench to bedside. The recent identification of variants in the interferon-inducible endosomal Na+ /H+ exchanger 9 associated with severe coronavirus disease-19 (COVID-19) has brought a shift in the way we envision aberrant endosomal acidification. Is it linked to an increased susceptibility to viral infection or a propensity to develop critical illness? This review summarizes the genetic and cellular evidence linking endosomal Na+ /H+ exchangers and viral diseases to suggest how they can act as a broad-spectrum modulator of viral infection and downstream pathophysiology. The review also presents novel insights supporting the complex role of endosomal acid-base homeostasis in viral pathogenesis and discusses the potential causes for negative outcomes of clinical trials utilizing alkalinizing drugs as therapies for COVID-19. These findings lead to a pathogenic model of viral disease that predicts that nonspecific targeting of endosomal pH might fail, even if administered early on, and suggests that endosomal Na+ /H+ exchangers may regulate key host antiviral defence mechanisms and mediators that act to drive inflammatory organ injury.


Subject(s)
COVID-19/therapy , SARS-CoV-2/pathogenicity , Sodium-Hydrogen Exchangers/genetics , Virus Diseases/therapy , COVID-19/genetics , COVID-19/virology , Endosomes/genetics , Endosomes/virology , Humans , Protons , Sodium-Hydrogen Exchangers/antagonists & inhibitors , Virus Diseases/genetics , Virus Diseases/virology
20.
Immunity ; 54(4): 753-768.e5, 2021 04 13.
Article in English | MEDLINE | ID: covidwho-1385739

ABSTRACT

Viral infections induce a conserved host response distinct from bacterial infections. We hypothesized that the conserved response is associated with disease severity and is distinct between patients with different outcomes. To test this, we integrated 4,780 blood transcriptome profiles from patients aged 0 to 90 years infected with one of 16 viruses, including SARS-CoV-2, Ebola, chikungunya, and influenza, across 34 cohorts from 18 countries, and single-cell RNA sequencing profiles of 702,970 immune cells from 289 samples across three cohorts. Severe viral infection was associated with increased hematopoiesis, myelopoiesis, and myeloid-derived suppressor cells. We identified protective and detrimental gene modules that defined distinct trajectories associated with mild versus severe outcomes. The interferon response was decoupled from the protective host response in patients with severe outcomes. These findings were consistent, irrespective of age and virus, and provide insights to accelerate the development of diagnostics and host-directed therapies to improve global pandemic preparedness.


Subject(s)
Immunity/genetics , Virus Diseases/immunology , Antigen Presentation/genetics , Cohort Studies , Hematopoiesis/genetics , Humans , Interferons/blood , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Myeloid Cells/immunology , Myeloid Cells/pathology , Prognosis , Severity of Illness Index , Systems Biology , Transcriptome , Virus Diseases/blood , Virus Diseases/classification , Virus Diseases/genetics , Viruses/classification , Viruses/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL